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Motivation I
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Motivation II

Bitcoin is the first decentralized crypto–currency created in 2009 and documented in
Nakamoto (2009).
Since its inception, it gained a growing attention from the media, academics, and
finance industry
In recent months the global interest in Bitcoin and crypto–currencies has spiked
dramatically:

Japan has recognized Bitcoin as a legal method of payment;
some central banks are exploring the use of the crypto–currencies;
a large number of companies and banks created the Enterprise Ethereum Alliance to
make use of the crypto–currencies and the related technology called blockchain, Forbes
(2017).
The Chicago Mercantile Exchange (CME) started the negotiation of Bitcoin futures on
18th of December 2017, see Exchange (2017). Nasdaq and Tokyo Financial Exchange
will follow late in 2018, see Bloomberg (2017).

All this interest has been reflected on the crypto–currencies market capitalization
that exploded from around 19 billion in February 2017 to around 850 billion in
January 2018.
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Motivation III

The dynamic of those series is quite complex displaying:
extreme observations;
asymmetries;
several nonlinear characteristics which are difficult to model, see Catania and Grassi
(2017).

New econometric model to study the characteristics of those series are needed.

This is a new and unexplored market and these models will be important for asset
allocation, risk management, and pricing of derivative securities.
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Bitcoin
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Our contribution

We study the predictability of crypto–currencies time series.

We compare several models in point and density forecasting of four of the most
capitalized series: Bitcoin, Litecoin, Ripple and Ethereum.

We apply a set of crypto–predictors and rely on Dynamic Model Averaging (DMA)
to combine a large set of univariate Dynamic Linear Models with different forms of
time variation.

We find statistical significant improvements in point forecasting when using
combinations of univariate models.

The analysis is performed exploiting the eDMA package of Catania and Nonejad
(2018).
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The forecast design
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Figure: Four major crypto–currencies daily percentage log returns: (a) Bitcoin (BTC); (b)
Litecoin (LTC); (c) Ripple (XRP); (d) Ethereum (ETH)
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Crypto–currencies and Crypto–predictors

Data Overview
Abbreviation Full name Transformation
Cryptocurrencies time series
BTC Bitcoin First difference of Log
ETH Ethereum First difference of Log
XRP Ripple First difference of Log
LTC Litecoin First difference of Log
Additional crypto–explicative time series
BTC HL Bitcoin High minus Bitcoin Low Log
ETH HL Ethereum High minus Ethereum Low Log
XRP HL Ripple High minus Ripple Low Log
LTC HL Litecoin High minus Litecoin Low Log
Lag First, second and third lags of all cryptocurrencies
Additional financial and macro time series
CDS 5y Europe credit default swap index 5 years First difference of Log
ES 600 Stoxx Europe 600 - Price Index First difference of Log
GLD Gold Bullion LBM First difference of Log
NK 225 Nikkei 225 Stock Average - Price Index First difference of Log
SP 500 S&P 500 Composite - Price Index First difference of Log
SV Silver Handy & Harman Base Price First difference of Log
BD 1m 1-Month US Treasury Constant Maturity Rate First difference
BD 10y 10-Year US Treasury Constant Maturity Rate First difference
VIX VIX closing price Log
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Crypto–predictors

Having defined the set of crypto–predictors we would like to answer the following
questions:

i) Are all these crypto–predictors relevant?

ii) Is their importance changed over time?

iii) Can be used to predict cryptocurrencies?

We answer to these questions by exploiting the Dynamic Model Averaging technique
developed by Raftery et al. (2010) and implemented in the R package eDMA by Catania
and Nonejad (2018).
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What’s DMA?

In order to obtain the best forecast possible, practitioners often try to take advantage of
the many predictors available and seek to combine the information from these predictors
in an optimal way, see Stock and Watson (1999).

DMA offers a statistical coherent way to combine predictions delivered by several models.

Which models? All possible dynamic linear regression models that can be built from
subset of regressors!

How many are them? Assuming N possible crypto–predictors we have 2N different
models. In our case N = 18 i.e. 262’144 different models.
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Some formula behind DMA

It is assumed that each model, i ∈ (1, . . . , 2N ), with associated vector of regressors at
time t, F (i)

t , is a Dynamic Linear Model (DLM) á la West and Harrison (1999):

yt = F (i)>
t θ

(i)
t + ε

(i)
t , ε

(i)
t ∼ N

(
0,V (i)

t

)
(1)

θ
(i)
t = θ

(i)
t−1 + β(i)

t , β(i)
t ∼ N

(
0,W (i)

t

)
. (2)

W (i)
t is important since it affects the variability of the θ

(i)
t coefficients. We implement the

following update relying on a forgetting factor δ ∈ (0, 1):

W (i)
t = (1− δ)/δC (i)

t−1,

where C (i)
t−1 is an estimate of the predicted covariance matrix of θ

(i)
t−1 delivered by the

Kalman Filter.

How to select δ? We consider a grid of d = 10 values δ ∈ (0.9, 0.91, ..., 0.99) and perform
DMA over these values. The total number of resulting models is now 2N × d = 2′621′440
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The eDMA package for R

Efficiently implements a DMA procedure based on Raftery et al. (2010) and Dangl
and Halling (2012).

Routines are written in C++ using the Armadillo library of Sanderson (2010)
exploiting the Rcpp and RcppArmadillo packages of Eddelbuettel and François
(2011) and Eddelbuettel and Sanderson (2014), respectively.

Parallel execution relays on the OpenMP API (ARB OpenMP, 2008).

The eDMA package is available on CRAN. It’s functionalities are detailed in a JSS paper
recently appeared: 10.18637/jss.v084.i11.
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DMA using eDMA

The SimData data set is available for illustration purposes. This is one draw from a DLM
with variables x2, x3 and x4 plus a constant included. Variables x5 and x6 are fake
variables.

R> data("SimData", package = "eDMA")

DMA is then performed using the function DMA() as

R> Fit <- DMA(y ˜ x2 + x3 + x4 + x5 + x6, data = SimData,
vDelta = seq(0.9, 1.0, 0.01))

DMA() automatically parallelize the code if the hardware allows for it!

Fit is an object of the class DMA and comes with several methods such as: show, plot,
summary, coef and as.data.frame.
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Graphical representation

> plot(Fit)

Type 1-16 or 0 to exit
1: Point forecast
2: Predictive likelihood
3: Posterior weighted average of delta
4: Posterior inclusion probabilities of the predictors
5: Posterior probabilities of the forgetting factors
6: Filtered estimates of the regression coefficients
7: Variance decomposition
8: Observational variance
9: Variance due to errors in the estimation of the coefficients, theta

10: Variance due to model uncertainty
11: Variance due to uncertainty with respect to the choice of
the degrees of time-variation in the regression coefficients

12: Expected number of predictors (average size)
13: Number of predictors (highest posterior model probability) (DMS)
14: Highest posterior model probability (DMS)
15: Point forecasts (highest posterior model probability) (DMS)
16: Predictive likelihood (highest posterior model probability) (DMS)
Selection:
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Posterior inclusion probabilities
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Figure: Posterior inclusion probabilities of the predictors using simulated data.
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eDMA is fast!

T/N 4 6 8 10 12 14 16
100 34.5 41.4 60.7 81.6 69.5 54.5 49.8
500 47.3 54.3 92.9 82.4 70.5 49.0 54.1

1000 59.0 58.3 81.6 84.2 71.3 50.6 51.9

Table: Ratio of computation time between the dma() function from the dma package of
McCormick et al. (2016) and the DMA() function of the eDMA package using different values of
T and n. The ratio is computed using the average computational time taken after 10 code
evaluations using the microbenchmark package of Mersmann (2018).
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eDMA is fast!

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min5 min
15 min
30 min

T = 100

(a)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

1 min5 min
15 min
30 min

T = 150

(b)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min5 min
15 min
30 min

T = 200

(c)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

1 min5 min
15 min
30 min

T = 250

(d)

● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

● ● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

● ● ● ● ● ● ● ● ● ● ● ●
●

●

●

●

●

1 min5 min
15 min
30 min

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18n

T = 550

(e)

Leopoldo Catania (Aarhus BSS) Predicting Cryptocurrencies with the eDMA package May 13, 2018 17 / 29



Univariate models

All these univariate models can be estimated using eDMA by setting appropriate
constraints, see Catania and Nonejad (2018).

Abbreviation Full Description
AR(1) Autoregressive model of order one, benchmark model.
KS Kitchen Sink specification.
DMA DMA across all models and forgetting factor combinations.

See Dangl and Halling (2012).
DMS Dynamic Model Selection (DMS).

Table: Univariate models considered in the forecasting exercise. The first column is the model’s
abbreviation. The second column provides a brief description of each individual model.
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Forecasting Measures

Mean squared error for each currency:

MSEi =

√√√√ 1
T − R

T−1∑
t=R

(
ŷt+h|t − yt+h

)2
,

with T = number of observations; R = length of rolling window; ŷt+h|t = individual
crypto forecasts.
Average log predictive score is broadest measure of density accuracy for each
currency:

PLt+h(yt+1) = ln (f (yt+h|It ))︸ ︷︷ ︸
predictive density for yt+h

using infos up to t

Log predictive score can be computed for joint multivariate predictions Yt+h.
Tests: Diebold-Mariano for pairwise comparison (significance difference in bold);
model confidence set for joint comparison (significant inclusion in grey).
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Summary I

Call:

DMA(formula = vY ˜ cds5y + eurostoxx600 + gold + nikkei225 + silver + sp500 +
vix + bonds1m + bonds10y + bitcoin.HighLow + ethereum.HighLow +
litecoin.HighLow + ripple.HighLow + ethereum + litecoin +
ripple + Lag.1 + Lag.2 + Lag.3 )

Residuals:
Min 1Q Median 3Q Max

-11.4253 -0.2826 0.0341 0.4746 9.9955
Coefficients:

E[theta_t] SD[theta_t] E[P(theta_t)] SD[P(theta_t)]
(Intercept) -0.07 0.33 1.00 0.00
cds5y 0.05 0.32 0.14 0.18
eurostoxx600 0.00 0.12 0.15 0.16
gold -0.04 0.15 0.19 0.18
nikkei225 -0.03 0.18 0.18 0.22
silver 0.00 0.04 0.21 0.16
sp500 0.00 0.16 0.18 0.20
vix -0.02 0.21 0.50 0.23
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Summary II

bonds1m 0.02 0.04 0.20 0.18
bonds10y 0.00 0.10 0.17 0.21
bitcoin.HighLow 0.00 0.16 0.20 0.19
ethereum.HighLow -0.02 0.08 0.36 0.20
litecoin.HighLow 0.01 0.12 0.19 0.13
ripple.HighLow -0.04 0.42 0.27 0.27
ethereum -0.03 0.13 0.54 0.29
litecoin 0.00 0.05 0.19 0.15
ripple -0.01 0.11 0.19 0.13
Lag.1 -0.01 0.03 0.15 0.14
Lag.2 -0.01 0.06 0.16 0.20
Lag.3 0.00 0.04 0.14 0.17

Variance contribution (in percentage points):
vobs vcoeff vmod vtvp

11.61 80.86 7.27 0.26

Top 10% included regressors: (Intercept), ethereum
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Summary III

Forecast Performance:
DMA DMS

MSE 1.338 1.354
MAD 0.759 0.762
Log-predictive Likelihood -829.689 -870.350

Leopoldo Catania (Aarhus BSS) Predicting Cryptocurrencies with the eDMA package May 13, 2018 22 / 29



Univariate forecasting results: MSE

h 1 2 3 4 5 6 7
Bitcoin

AR1 42.49 42.28 41.54 41.62 41.55 41.42 41.12
KS 1.52 12.25 1.84 0.96 1.06 1.06 1.12
DMA 0.97 0.97 1.01 1.04 1.02 1.02 1.13
DMS 1.01 1.02 1.06 1.06 1.02 1.05 1.15

Litecoin
AR1 134.27 132.88 133.05 133.43 133.60 133.25 131.71
KS 1.02 1.17 7.64 1.01 1.17 1.11 1.09
DMA 0.98 1.03 1.09 1.11 1.03 1.06 1.15
DMS 1.00 1.07 1.11 1.11 1.04 1.09 1.22

Table: Mean squared error (MSE), computed over the forecast horizon. Results are reported
relative to the benchmark specification (AR1) for which the absolute score is reported. Models’
description is reported in Table 2.
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Univariate forecasting results: MSE

h 1 2 3 4 5 6 7
Ripple

AR1 224.02 221.31 222.02 221.13 218.93 219.62 219.45
KS 1.11 1.24 1.27 1.10 1.76 1.21 2.01
DMA 1.20 1.03 1.22 1.25 1.10 1.18 1.17
DMS 1.27 1.05 1.22 1.26 1.11 1.21 1.21

Ethereum
AR1 180.57 174.99 175.61 175.56 175.79 175.90 174.08
KS 1.05 12.72 1.09 1.01 1.02 1.67 1.09
DMA 0.97 1.01 1.03 1.01 1.04 1.04 1.04
DMS 1.02 1.04 1.08 1.05 1.05 1.09 1.04

Table: Values in bold, indicate rejection of the null hypothesis of Equal Predictive Ability
between each model and the benchmark according to the Diebold–Mariano test at the 5%
confidence level. Gray cells indicate those models that belong to the Superior Set of Models
delivered by the Model Confidence Set procedure at confidence level 10%.
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Posterior inclusion probabilities: Bitcoin
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Figure: Posterior inclusion probabilities of the predictors for Bitcoin.
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Posterior inclusion probabilities: Litecoin
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Figure: Posterior inclusion probabilities of the predictors for Litecoin.

Leopoldo Catania (Aarhus BSS) Predicting Cryptocurrencies with the eDMA package May 13, 2018 26 / 29



Average number of predictors
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Figure: Average number of predictors for Bitcoin, Ethereum, Litecoin, and Ripple.
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Conclusion

We study the predictability of crypto–currencies time series.

We compare several alternative models in point and density forecasting of four of
the most capitalized series: Bitcoin, Litecoin, Ripple and Ethereum

Best predictors are: i) Equity EU and USA markets, ii) US interest rates, iii) past
volatility levels.

Cryptocurrencies predictability has increased over time.

Extension: risk management.
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